Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer.

نویسندگان

  • Bjørge Westereng
  • David Cannella
  • Jane Wittrup Agger
  • Henning Jørgensen
  • Mogens Larsen Andersen
  • Vincent G H Eijsink
  • Claus Felby
چکیده

Enzymatic oxidation of cell wall polysaccharides by lytic polysaccharide monooxygenases (LPMOs) plays a pivotal role in the degradation of plant biomass. While experiments have shown that LPMOs are copper dependent enzymes requiring an electron donor, the mechanism and origin of the electron supply in biological systems are only partly understood. We show here that insoluble high molecular weight lignin functions as a reservoir of electrons facilitating LPMO activity. The electrons are donated to the enzyme by long-range electron transfer involving soluble low molecular weight lignins present in plant cell walls. Electron transfer was confirmed by electron paramagnetic resonance spectroscopy showing that LPMO activity on cellulose changes the level of unpaired electrons in the lignin. The discovery of a long-range electron transfer mechanism links the biodegradation of cellulose and lignin and sheds new light on how oxidative enzymes present in plant degraders may act in concert.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route

BACKGROUND Although lignin peroxidase is claimed as a key enzyme in enzyme-catalyzed lignin degradation, in vitro enzymatic degradation of lignin was not easily observed in lab-scale experiments. It implies that other factors may hinder the enzymatic degradation of lignin. Irreversible interaction between phenolic compound and lignin peroxidase was hypothesized when active enzyme could not be r...

متن کامل

Improved Wet Air Oxidation Pretreatment for Enhanced Enzymatic Hydrolysis of Rice Husk for Bioethanol Production

Pretreatment of rice husk by the Alkaline Peroxide Assisted Wet Air Oxidation (APAWAO) approach enhanced the enzymatic convertibility of cellulose in APAWAO-pretreated rice husk. The present work describes the structural changes in rice husk brought about by APAWAO pretreatment by means of Scanning Electron Microscopy (SEM). The SEM images illustrate the extensive loss of biomass integrity foll...

متن کامل

Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this

Lignin is the second most abundant constituent of the cell wall of vascular plants, where it protects cellulose towards hydrolytic attack by saprophytic and pathogenic microbes. Its removal represents a key step for carbon recycling in land ecosystems, as well as a central issue for industrial utilization of plant biomass. The lignin polymer is highly recalcitrant towards chemical and biologica...

متن کامل

Role of lignin in the enzymatic hydrolysis of lignocellulose

Characterization, understanding and overcoming barriers of enzymatic hydrolysis of different raw materials is essential for the development of economically competitive processes based on enzymatic treatments. This work focused on factors relevant for the improvement of enzymatic hydrolysis of lignocellulose raw materials derived from softwood. The major interest of the work was in lignin. Speci...

متن کامل

Hetti Palonen Role of lignin in the enzymatic hydrolysis of lignocellulose

Characterization, understanding and overcoming barriers of enzymatic hydrolysis of different raw materials is essential for the development of economically competitive processes based on enzymatic treatments. This work focused on factors relevant for the improvement of enzymatic hydrolysis of lignocellulose raw materials derived from softwood. The major interest of the work was in lignin. Speci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015